Presented at the
Armed Forces Radiobiology Research Institute
Scientific Medical Effects of Ionizing Radiation Course
28 Jul through 1 Aug 2008
Bethesda, Maryland

Distributed via the AFRRI Web site
www.usuhs.edu/afrr/

The Scientific Medical Effects of Ionizing Radiation Course, conducted once a year, focuses on the latest research about the medical effects of ionizing radiation to help clinicians, health physicists, and medical planners preserve troop health in the face of radiological/nuclear terrorism or warfare.

For additional information about AFRRI training opportunities, contact AFRRI Military Medical Operations at 301-295-1069 or view this web page:
www.usuhs.edu/afrr/outreach/meir/meir.htm

To view more AFRRI information products, go to this web page:
www.usuhs.edu/afrr/outreach/infoprod.htm

For questions or more information about the content of this presentation, contact the presentation author.
Our Focus

• Terrorist incidents impacting large populations
• Even “small” incidents present significant challenges
 o London Po-201 incident

November 2006, London Po-210 International Follow-Up

52 countries!
Scenario 11: Radiological Attack – Radiological Dispersal Devices

• Casualties
 o 180 fatalities; 270 injuries; 20,000 detectible contaminations (at each site)

• Evacuations/displaced persons
 o 10,000 evacuated to shelters in safe areas (decontamination needed)
 o 25,000 in each city are given shelter-in-place instructions
 o Hundreds of thousands self-evacuate from major urban areas in anticipation of future attacks

Scenario 1: Nuclear Detonation – 10-kton improvised nuclear device

• Casualties
 o Hundreds of thousands

• Evacuations/displaced persons
 o 100,000 in affected area seek shelter in safe areas (decontamination needed)
 o 250,000 instructed to shelter-in-place as plume moves across region(s)
 o 1 million+ self-evacuated from major urban areas
In the aftermath of a large nuclear or radiological incident, many far away communities will likely be impacted.

National Response Framework
Nuclear/Radiological Incident Annex

Victim decontamination/population monitoring

- External monitoring and decontamination of possibly affected victims are accomplished locally and are the responsibility of state, local, and tribal governments. Federal resources are provided at the request of, and in support of, the affected State(s). HHS, through ESF #8 and in consultation with the coordinating agency, coordinates Federal support for external monitoring of people and decontamination.

- HHS assists and supports state, local, and tribal governments in performing monitoring for internal contamination and administering available pharmaceuticals for internal decontamination, as deemed necessary by state health officials.

- HHS assists local and state health departments in establishing a registry of potentially exposed individuals, perform dose reconstruction, and conduct long-term monitoring of this population for potential long-term health effects.
Default Thinking on Dealing with the Public

Outline

• Brief history
• Overview of the Planner’s Guide
 o Scope
 o Target audience
 o Key concepts
• Work in progress
CDC Roundtable (January 2005)

- American Red Cross
- Armed Forces Radiobiology Research Institute
- Columbia University
 - Center for Int’l Earth Science Info Network
- FRMAC—Remote Sensing Laboratory
- Hershey Medical Center
- Indian Health Services
- Int’l Atomic Energy Agency
- Nat’l Assn. of County & City Health Officials
- N.Y. City Dept. of Health & Mental Hygiene
- Science Applications Int’l Corp.
- State of Arkansas Dept. of Health
- State of Georgia Emergency Medical Services
 - Nat’l Assn. of State EMS Directors
- State of Illinois Emergency Management Agency
- State of Iowa Dept. of Health
- State of Maine Health & Environmental Testing Lab
- University of Alabama-Birmingham
- State of Washington Dept. of Health
- Texas A&M University
- University of Georgia
- University of New Mexico
- U.S. Army Civil Support Team
- U.S. Dept. of Commerce
 - Nat’l Institute of Standards & Technology
- U.S. Dept. of Health & Human Services
 - Center for Disease Control & Prevention
 - Food & Drug Administration
 - Health Resources & Services Administration
 - National Institutes of Health
 - Substance Abuse & Mental Health Services Admin.
- U.S. Dept. of Homeland Security
 - Nuclear & Chemical Hazards Branch
 - Environmental Measurements Laboratory
- U.S. Environmental Protection Agency
- U.S. NORTHCOM/SG

Federal Radiological Monitoring & Assessment Center

Technical Advisory Group

Population Monitoring Working Group
- HHS/CDC
- HHS/FDA
- USEPA
- USNRC
- DOE/NNSA
- California Dept. of Health
- Georgia Dept. of Natural Resources
- CRCPD
- REAC/TS
- ORISE
- American Red Cross
CDC Guidance

- **Target audience:**
 - State and local public health and emergency preparedness personnel
- **Focus:**
 - Terrorism incidents involving mass casualties
- **Scope:**
 - Assumes local infrastructure is intact
 - Principles apply to all radiation incidents

Purpose

Assist state, local, and tribal public health officials to:

- Evaluate their emergency response plans
- Identify staffing needs, training requirements, and priorities
- Develop further mutual assistance programs with other states
- Allocate personnel and resources during a response
Population Monitoring

- Evaluate potentially affected population for:
 - Immediate need for medical treatment (both rad and non-rad related)
 - Presence of contamination on body or clothing
 - Intake of radioactive materials
 - Removal of external or internal contamination (decontamination)
 - Radiation dose received and risk of health effects
 - Long-term health effects (needs registry)

Other Public Health Planning Considerations

- Size of the community
- Population demographics
- All available local resources
 - Facilities for monitoring and decontaminating people
 - Agreements with local jurisdictions
 - Assistance from federal responders
States with Operating Nuclear Power Plants

• Public health planners in these states should already have local response plans for a nuclear power plant incident. These plans include population monitoring.
• Effective response to a radiological or nuclear terrorism incident requires broader planning and a different response than current plans likely include.

Guiding Principles

• The first priority is to save lives – respond to and treat the injured first.
• Contamination with radioactive materials is not immediately life-threatening.
• Initial population monitoring activities should focus on preventing acute radiation health effects.
 o Cross contamination issues are a secondary concern
Guiding Principles (Cont.)

• Scalability and flexibility are an important part of the planning process.
• The radiation control program in your states is a key resource for implementing the CDC population monitoring guidance.
 o Establish relationships with other radiation experts/resources in the community (hospitals, universities, etc.)

In a Radiation Emergency

• Public health practitioners need to work closely with radiation safety professionals (health physicists)
Joint CRCPD/CDC
“Roundtable on Communication and Teamwork: Keys to Successful Radiological Response”
June 17-18, 2008

• Invitedes
 o CRCPD, NACCHO, ASTHO, CSTE

• Purpose
 o Strengthen communication
 o Establish partnerships/improve working relationships
 o Increase awareness of responsibilities in radiation emergencies

Key Considerations

• Size of the community
• Available local resources
 o Facilities, equipment and staff for monitoring and decontaminating people
 o Agreements with local jurisdictions
 o Registered radiation volunteers
• Recognize community members with special needs
• Know how to identify the affected population
• Understand the objectives of population monitoring
• Population demographics
Objectives of Population Monitoring

1. Identify people in immediate danger
2. Identify people who need medical treatment for contamination or exposure
3. Recommend and facilitate practical steps to minimize risk
4. Register people for long-term health monitoring

CDC Planner’s Guide Content

- Population monitoring – the initial hours:
 - Contamination screening criteria
 - Radiation survey methodology
 - Clothing services
 - Transportation services
 - Washing facilities
 - Registry
 - Collection of biological samples
 - Worker protection
Appendix C
Radiological Screening Criteria —External Contamination

• Benchmark screening criteria described:
 o FEMA-REP-21, Mar 1995 (under revision)
 o FEMA-REP-22, Oct 2002 (under revision)
 o NCRP Commentary #19, Dec 2005
 o CRCPD First Responder’s Guide, Sep 2006
 o IAEA Manual for First Responders, Oct 2006

Radiological Screening Criteria —External Contamination

• CDC does not recommend setting, a priori, a fixed screening criterion to be applied to all people for all incidents under all circumstances.
Screening Criteria Considerations

- Consider range of possible circumstances, keeping in mind:
 - Population monitoring objectives
 - Specific radiation survey instrumentation
 - Staffing resources and size of population
 - Facilities and resources for offering on-the-scene monitoring and decontamination
 - Other resources that can increase available options
- The planning should be done in advance, allowing for flexibility

CDC Planner’s Guide Content

- Population monitoring (day 2 and beyond)
- Setting up community reception centers
- Practical considerations for reception centers operation
- Pets
- Monitoring for external contamination and conducting decontamination
- Monitoring for internal contamination and conducting decontamination
- Scaling for size of event
Example: Typical Reception Center for a NPP EPZ

- For monitoring large populations, conventional approach may not be best
- Use of portal monitors?
- Use of “friskers”?
- Staffing

Community Reception Centers

- To assess people for exposure, contamination, and need for decontamination or other medical follow-up, and to register
- Compared to public health community planning for other incidents
 - Alternate care sites
 - Neighborhood emergency help centers
 - Acute care centers
 - Point of Dispensing (POD)
Point of Dispensing (POD)

• Mass dispensing of medication/vaccine in a public health emergency
• Natural or man-made
• Reach entire population within 48 hours
• 1000 people/hour per POD

Example

• Philadelphia Department of Public Health
• Similar planning in many other jurisdictions
• Terminology
• ICS

POINT OF DISPENSING (POD) OPERATIONS MANUAL

Philadelphia Department of Public Health
Division of Disease Control
Emergency Preparedness and Responder Program

EDITION 4
2004
POD Design

“Regular” Community Reception Center
“Pet-Friendly” Community Reception Center

Emergency Medical Care or Transfer
Psychosocial Issues

- Psychological assistance officer on staff for community reception centers
- Mental health in radiation disasters training — in production!
What if the local response infrastructure is not intact?

Nuclear Scenario

• Prioritize HP support for search and rescue
• Partial decon better than delayed decon
• Greater emphasis on monitoring for ARS and providing medical care
 o At reception centers
 o At shelters
• Prioritized population monitoring objectives still apply!
Nuclear Scenario (cont’d)

Much farther away from “ground zero,” reception center and shelter operations closer to RDD planning

Management of Internally Contaminated Individuals

- Depends on amount of radioactivity
- Monitoring large populations is a challenge:
 - Bioassay
 - Field screening using portable instruments
 - Hospital equipment (thyroid uptake scanner, gamma camera)
 - Ongoing work at CDC
Should We Be Concerned with Small Amounts of Radioactivity or Dose of Radiation?

- 12 Bq (disintegrations per sec)?
- 720 dpm (disintegrations per min)
- 5500 Bq?

Dose matters!

<table>
<thead>
<tr>
<th></th>
<th>Approx. dose (in rems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest X-ray</td>
<td>0.03</td>
</tr>
<tr>
<td>Average annual dose from exposure to natural sources</td>
<td>0.2-0.3</td>
</tr>
<tr>
<td>CAT scan (whole body)</td>
<td>1</td>
</tr>
<tr>
<td>Recommended annual limit in occupational exposure (exclusive of medical exposures)</td>
<td>1 to 5 max per year</td>
</tr>
<tr>
<td>No symptoms of illness</td>
<td>15</td>
</tr>
<tr>
<td>No symptoms of illness; minor, temporary decreases in white cells and platelets</td>
<td>50</td>
</tr>
<tr>
<td>Possible acute radiation syndrome: 10% will have nausea and vomiting within 48 hours and mildly depressed blood counts; Half of those exposed will die within 30 days without medical care</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>300-400³</td>
</tr>
</tbody>
</table>

³Hall, E.J. 2000, Radiology for the Radiologist. Lippincott Williams & Wilkins.

Laboratory Analyses

- Conventional methodology
 - 24-hr urine sample
 - 3–7 days turnaround time
 - 5–40 samples/lab
- Improved methodology (for population screening)
 - 1–50 ml “spot” sample
 - 4–36 hours turnaround time (multiple radionuclides)
 - 100–500+ samples/day/lab
- Challenges
 - Field screening and prioritization important
 - Interpretation of bioassay results and inherent uncertainties
Work in Progress

• Developing a planning decision tool (software) for optimizing the design and operation of community reception centers
• Developing protocols for use of hand-held radiation survey meters to assess internal contamination.
• Developing male, female, and child phantoms to be used for calibration of these instruments
• Developing a prototype instrument to be used for screening of internally contaminated patients in hospitals or reception centers (gamma-emitters only)

Emergency Field Screening for Internal Contamination Requirements

• Simple and easy to use equipment
• Readily available, mobile, cost effective
• Dual-purpose applications preferred
• Rapid (1–3 minutes) screening times
• Conversions for cpm/uCi-intake at varying times after intake
• Data archiving and export
Emergency Screening for Internal Contamination Solutions

- Use thyroid uptake probes available at existing clinical facilities
- Measure efficiencies for key isotopes using phantoms
- Apply biokinetic models for time after intake
- Develop software module
- Design a portable stand
- Provide software upgrades to establish nationwide availability of resource at low cost

Radiation Instruments in Hospitals

- To screen patients for internal contamination
 - Thyroid scanners
 - Feasible and practical
 - Gamma cameras
 - Not for large numbers

An evaluation of Hospital Radiation Detectors for Use in Screening Potentially Contaminated Individuals

www.bt.cdc.gov/radiation
Addressing Resource Issues

• Motivate the nation’s large health physics and medical physics community to enlist in a locally sponsored volunteer registry
• Examples
 o Medical Reserve Corps
 www.medicalreservecorps.gov
 o Georgia State Emergency Registry of Volunteers
 www.servga.gov
 o Florida Emergency Health Volunteer Registry
 www.servfl.com
 o North Carolina State Registry of Volunteers
 www.servnc.org

THANK YOU

http://emergency.cdc.gov/radiation

Radiation Studies Branch, CDC
email: rsb@cdc.gov
770-488-3800

Armin Ansari
770-488-3654
asa4@cdc.gov